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Introduction and Motivation
Background

Machine and deep learning models require large amounts of data.
Regarding empirical research the scarcity of problem gambling data implies:

unequal class distribution in cross-sectional data;
scarcity of time-series sequences;
limited knowledge of the distributions.

Known solutions:
Cross-section: 80+ synthetic oversampling methods (Kovács, 2019) including
deep learning applications (Pathare et al., 2023);
Time-series: Generative Adversarial Networks (GANs) with recurrent and/or
convolutional neural networks and different architecture (Brophy et al.,
2023).

Inspired by ...
Our work has been inspired by: i) Esteban et al. (2017), a paper on generation of
synthetic ICU data; ii) Zhu et al. (2019) on generation of synthetic ECG data of
persons with heart diseases; iii) Laptev et al. (2017), a study on anomaly detection
with neural networks.
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Introduction and Motivation

Research agenda / What are we doing and why?
Research on problem gambling in the time-series domain is scarce and is mainly
focused on time-series clustering (Suzuki et al., 2019, Peres et al., 2021).
Our work is a step towards an early detection of episodes of problem gambling
with neural networks in time series.

We pursue the following goals:
1 To generate synthetic time-series of gambling behavior which can be

further used to i) increase training/test sets for time-series models; ii)
derive features for aggregated cross-sectional data; iii) perform Monte
Carlo studies; iv) resolve privacy and data protection issues for replication
of research papers.

2 To apply neural networks for detection of early signs of problem gambling.

More on pros and cons of neural networks
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Introduction and Motivation

Figure (1) Which one is the GAMbler and which is the GANbler?
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Introduction and Motivation

Figure (2) Sample of synthetic and real sequences

Back
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Data
Wagers Winnings Deposits Spins Array 1  Array 2  Array 3  Array 4  Array 5

. . 40 .

4.8 3 . 24

41.7 53.2 . 139

. . 40 .

1.5 0.3 . 9

11 2.5 . 43

37.2 25.41 . 125

5.4 0.1 . 14

8 3.6 . 32

. . 50 .

60.1 47.4 . 150

12.1 16.2 . 54

Figure (3) Example for sequences with length of ten

Anonymous transaction data from the Safe-Server (for supervision and research
purposes) in the German federal state of Schleswig-Holstein between January 2020
and July 2022.
Merged gambling (wagers, winnings, spins) and non-gambling (deposits)
transactions.
Time-series of self-excluded and provider-excluded gamblers have been selected
maximizing the total number of transactions.
The data has been scaled before being used as inputs for training.
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Generative Adversarial Networks
The plain vanilla GAN (Goodfellow et al., 2014): two-player minimax game
between the generator and the discriminator.
The generator is trained using random noise to produce realistic synthetic
samples, which the discriminator would eventually fail to correctly distinguish from
the real ones.

Figure (4) Schematic representation of a vanilla GAN
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Generative Adversarial Networks
Plain vanilla GANs suffer from mode collapse and unstable training (Brophy
et al., 2023).
The time GAN (Yoon et al., 2019), based on Gated Recurrent Units (GRU), is
meant to solve these problems by incorporating embedding (encoder) and
recovery (decoder) components to provide mappings between the feature space
and the latent code. The latter components form an autoencoder.
Other notable examples: Esteban et al. (2017), Lin et al. (2020), Ni et al. (2021).

Epoch 10 Epoch 1000

...

Figure (5) Schematic representation of a time GAN (based on Brophy et al., 2023)
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Tuning the time GAN
Tuning time GAN for the gambling data

Original time GAN was tested on autoregressive multivariate gaussian data,
cyclical data, stock prices (see also Jansen, 2020), energy consumption and
irregular events. Current implementations are known to perform well only on
rather short sequences.

Our changes to the architecture, optimization and training allow us to generate
sequences up to 100 of a rather high quality:

Training and optimization → gradient clipping (Zhang et al., 2019, Esteban
et al., 2017) and bias and weight initialization to stabilize training (Glorot
and Bengio, 2010).
Architecture → a pyramidal architecture for the generator and
discriminator.
Generator → an additional noise layer added to the generator to improve
diversity (Noh et al., 2017).
Discriminator → an additional dropout layer to improve classification
performance (Srivastava et al., 2014).

Developing environment: Python (TensorFlow, Keras)

More on the architecture
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Examples and evaluation

Figure (6) Real time series; sampling window
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Examples and evaluation

Figure (7) Sample of synthetic and real sequences
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Examples and evaluation

Figure (8) Evaluation of diversity (Principal Component Analysis, left panel and t-distributed
Stochastic Neighbor Embedding, right panel)
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Examples and evaluation

Figure (9) Evaluation of fidelity (classification with a GRU classifier; upper panel) and
usefulness (10 step forecast with a GRU model; lower panel)
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Summary

Table (1) Comparison of descriptive statistics

Statistics Real data Synthetic data
Mean Wagers 126.25 140.67

Mean Winnings 123.70 139.24
Mean Deposits 75.35 61.45

Mean Spins 153.86 165.25
SD Wagers 159.24 162.74

SD Winnings 209.33 212.43
SD Deposits 32.47 37.98

SD Spins 172.03 183.81

After aggregation the synthetic time series preserve original properties.
One of the key challenges is related to reproduction of extreme
outliers.
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Multivariate anomaly detection with an autoencoder

Figure (10) Provider-excluded test sample; weighted outliers; trained on real data
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Multivariate anomaly detection with an autoencoder

Figure (11) Provider-excluded test sample; weighted outliers; trained on synthetic data
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Summary

Table (2) Missed opportunities for provider-exclusion measured in days and profit-loss (PL)

Gambler Days history To exclusion To exclusion (%) PL (EUR) PL (%)
1 413 286 69.25% -5157 79.89%
2 394 338 85.79% -13933 71.67%
3 387 99 25.58% -2305 68.17%
4 677 91 13.44% -3577 39.42%
5 814 572 70.27% -12578 57.61%

A tuned autoencoder can be used to detect anomalies in gambling
behavior as deviations from a forecast.

More on the architecture

Training on the real data yields similar list of anomalies as for training
on the synthetic data.
In most cases provider exclusion is initiated too late, after numerous
episodes of problem gambling.
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Discussion and conclusion

Discussion
Potential for bi-directional (recurrent) and multi-directional (convolutional) designs and
application of variational autoencoders.
For time series GANs, higher complexity does not necessarily lead to improvements in
fidelity or diversity.
Desired sequence length is related to data availability.
Outliers, monotonous and cool down phases may be challenging to replicate.

Conclusion
A fine-tuned time GAN can generate relatively long synthetic sequences representing
gambling behavior which partly satisfies diversity, fidelity and usefulness criteria.
The generated synthetic data can potentially be used to enrich training and test sets,
derive features, perform simulation studies and enable replication of existing research.
The autoencoder (trained on real or synthetic data) can be further tuned for a
multivariate anomaly detection to reveal the opportunity costs of non-exclusion, or
exclusion delays.
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Thank you for your attention!
Please do not hesitate to contact us for questions and

suggestions!

vadim.kufenko@uni-hohenheim.de
steffen.otterbach@uni-hohenheim.de

Visit us here:
https://gluecksspiel.uni-hohenheim.de/en
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Introduction and Motivation

Pros of neural networks
No underlying model required
Able to learn the smallest details
Capture path dependence
Multivariate framework
Flexible architecture

Cons and Potential risks
Complex neural architecture search
Complex diagnostics/evaluation
Demanding (time and dimensions)
Mode collapse
Training instability

Figure (12) Time series properties as features; univariate example with four neurons

Back
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Tuning the time GAN

Generator                   Discriminator

Figure (13) Schematic representation of the tuned time GAN elements

Back
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Tuning the autoencoder

Figure (14) Schematic representation of a tuned autoencoder

Back
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Examples and evaluation: white noise test

Figure (15) Comparison of autocorrelation functions
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