Predicting sports betting player suspensions by algorithm potentials, limitations, and recommendations

Thomas Krause 1 Vadim Kufenko¹ Steffen Otterbach¹

¹Gambling Research Center, University of Hohenheim Third Current Advances in Gambling Research (CAGR) Conference June 28th and 29th King's College London

Thursday 29th June 2023

Outline

Introduction and starting point

Data, Training and Estimation

Direct Compare of Pipelines

Best Pipeline and Model

Introduction and starting point

Data, Training and Estimation

Direct Compare of Pipelines

Best Pipeline and Model

Introduction and starting point

- Ongoing liberalisation of the German online gambling market
- Increase in (online) sports betting in Germany (2021 conservatively approx. 10 billion euros)

- Other and new addiction potentials
- Mandate of the German State Treaty on Gambling 2021:

[...] use an automated system based on scientific evidence and algorithms for the early detection of gamblers at risk of gambling addiction and of gambling addiction. (GlüStV 2021, translate by T.K.)

Opportunities for the prevention of addiction

- Extensive non-reactive data collection (safe-server infrastructure)
- Potential for early identification of gambling problems through ML models

Our guiding research questions are

- Which algorithms and data handling techniques are appropriate?
- Which (player) data should be used in the algorithms for this purpose?
- Which indicators and cut-offs are applicable for the early protection of at-risk and pathological gamblers?

Analytic approach

- Suspension events as a target variable
- Aggregation of process-generated behavioural data at daily, weekly and annual level
- ML-Estimations: potential and predictors
- Test of data handling procedures for rare event data (imbalanced)
- Each data-pipeline compared multiple modern models
- Hyperparameter-Search for the three best models in each pipeline
- Selection of best models in each pipeline

Pipelines

Figure: Raw Data to Pipelines

Introduction and starting point

Data, Training and Estimation

Direct Compare of Pipelines

Best Pipeline and Model

Data

- Two biggest providers of sportbets in SH (> 98% of a active sportbeters and 97% of all suspensions)
- Year 2020 to beginning of 2021 (26 459 active players)
- Aggregation of player-data, transactions data, bet data, results data in yearly, weekly, and daily time-intervals
- Totals, means, variations, shape, range and change of aggregated case data resulting in 399 features

Figure: Data, Structure and Connections

Descriptive Data

Descriptive Data

Challenges for Data-Analysis

- Variation in provider labels (even wrong use of variables)
- Erroneous information
 - betting odds < 1</p>
 - placement of bets despite present suspension
 - Overcoverage: NON-online-Players in data
- Missing unblocking events

Model Training and Estimators

- Train/Test-Split: 75/25
- Feature-Space-Reduction: Boruta
- Hyperparameter Search: Optuna (Akiba et al. 2019) with Tree Structured Parzen Estimator (TPE) with Asynchronous Successive Halving Algorithm (asha) at 200 Iterations
- Estimators: rf, ada, et, lightgbm; gbc, xgboost, catboost
- Rebalancing Data-Pipelines: random undersampling, random oversampling, SMOTE-TOMEK, SMOTE-Borderline
- F1-Score as main scorer

Introduction and starting point

Data, Training and Estimation

Direct Compare of Pipelines

Best Pipeline and Model

Pipeline Performance Comparison

	Pipeline					
Metric	Unders.	Overs.	Tomek	Borderline		
Model-Class	GBM	XGB	LGBM	XGB		
Accuracy	0.77	0.93	0.94	0.94		
Precision(macro)	0.38	0.47	0.51	0.55		
Precision(weighted)	0.92	0.91	0.92	0.92		
Recall (macro)		0.42	0.40	0.43		
Recall (weighted)	0.77	0.93	0.94	0.94		
F1-Score (macro)	0.39	0.43	0.42			
F1-Score (weighted)	0.83	0.92	0.92	0.94		
AUC-ROC (OvR)	0.747	0.817	0.826	0.816		

Table: Comparison of ML model performance

Introduction and starting point

Data, Training and Estimation

Direct Compare of Pipelines

Best Pipeline and Model

pre	cision	recall	f1-score	support			
0	0.95	0.99	0.97	6228			
1	0.46	0.26	0.33	258			
2	0.24	0.04	0.07	129			
accuracy			0.94	6615			
macro avg	0.55	0.43	0.46	6615			
weighted avg	0.92	0.94	0.93	6615			
Accuracy: 0.9399848828420257							
AUC ovr: 0.8162012258005035							
Average precisior	score,	micro-aver	aged over	all classes	: 0.97		
Average precisior	. score,	macro-aver	aged over	all classes	: 0.46		
Average precisior	score,	weighted-averaged over all classes: 0.94					
Average precision score, samples-averaged over all classes: 0.97							

Figure: SMOTE-Borderline

Figure: SMOTE-Borderline

Introduction and starting point

Data, Training and Estimation

Direct Compare of Pipelines

Best Pipeline and Model

Conclusion for the prediction of suspension events

- SMOTE-Borderline with gradient boosting (XGBoost or LightGBM) are advisable for prediction
- Many false-positive cases and why this is plausible and to be expected
- Problems of the target variable for our predictions
- Third-party suspension (literal translation of German term: Foreign Exclusion)
 - 1. does not follow a reconstructible logic
 - 2. differs greatly between providers

Political consequences and pathways for gambling supervision.

better data oversight is needed

- Uniform labels are needed
- Unblocking has to be documented (seems now to be the case)
- Implausible values must be compulsorily checked for an effective monitoring of operators
- Additional datapoints are needed for an effective "automated system":
 - Assessment of PGSI (etc.)
 - Documentation of communication between operator and user

Contact

Dr. Thomas Krause thomas.krause@uni-hohenheim.de University of Hohenheim, Gambling Research Center Schwerzstraße 46, 70599 Stuttgart https://gluecksspiel.uni-hohenheim.de

UNIVERSITY OF HOHENHEIM

Figure: SMOTE-Borderline