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Introduction and starting point

» Ongoing liberalisation of the German
online gambling market

» Increase in (online) sports betting in

Germany (2021 conservatively approx. 10
billion euros)

» Other and new addiction potentials

» Mandate of the German State Treaty on
Gambling 2021:
[...] use an automated system based on scientific evidence
and algorithms for the early detection of gamblers at risk
of gambling addiction and of gambling addiction. (GliStV
2021, translate by T.K.)
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Opportunities for the prevention of addiction

> Extensive non-reactive data collection (safe-server
infrastructure)

» Potential for early identification of gambling problems through
ML models

Our guiding research questions are
» Which algorithms and data handling techniques are
appropriate?
» Which (player) data should be used in the algorithms for this
purpose?
» Which indicators and cut-offs are applicable for the early
protection of at-risk and pathological gamblers?
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Analytic approach

» Suspension events as a target variable

» Aggregation of process-generated behavioural data at daily,
weekly and annual level

> ML-Estimations: potential and predictors

> Test of data handling procedures for rare event data
(imbalanced)

» Each data-pipeline compared multiple modern models

» Hyperparameter-Search for the three best models in each
pipeline

» Selection of best models in each pipeline
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Pipelines
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Data

Two biggest providers of sportbets in SH (> 98% of a active
sportbeters and 97% of all suspensions)

Year 2020 to beginning of 2021 (26 459 active players)

Aggregation of player-data, transactions data, bet data, results
data in yearly, weekly, and daily time-intervals

Totals, means, variations, shape, range and change of
aggregated case data resulting in 399 features

Figure: Data, Structure and Connections
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Descriptive Data
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Descriptive Data

Distribution of sporttypes in 2020
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Challenges for Data-Analysis

» Variation in provider labels (even wrong use of variables)
» Erroneous information

» betting odds < 1
» placement of bets despite present suspension
» Overcoverage: NON-online-Players in data

» Missing unblocking events
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Model Training and Estimators

v

Train/Test-Split: 75/25
Feature-Space-Reduction: Boruta

Hyperparameter Search: Optuna (Akiba et al. 2019) with
Tree Structured Parzen Estimator (TPE) with Asynchronous
Successive Halving Algorithm (asha) at 200 Iterations

Estimators: rf, ada, et, lightgbm; gbc, xgboost, catboost

Rebalancing Data-Pipelines: random undersampling, random
oversampling, SMOTE-TOMEK, SMOTE-Borderline

F1-Score as main scorer
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Pipeline Performance Comparison

Table: Comparison of ML model performance

Pipeline
Metric Unders. Overs. Tomek Borderline
Model-Class GBM XGB  LGBM XGB
Accuracy 0.77 0.93
Precision(macro) 0.38 0.47 0.51
Precision(weighted) 0.91
Recall (macro) 0.42 0.40 0.43
Recall (weighted) 0.77 0.93
F1-Score (macro) 0.39 0.42
F1-Score (weighted) 0.83 0.92 0.92
AUC-ROC (OVR) 0.747  0.817 0.816
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Best Pipeline and Model: SMOTE-Borderline with XGBoost
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Best

Pipeline and Model

Receiver operating characteristic for multi-class data
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Best Pipeline and Model: SMOTE-Borderline with XGBoost
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Figure: SMOTE-Borderline
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Conclusion for the prediction of suspension events

» SMOTE-Borderline with gradient boosting (XGBoost or
LightGBM) are advisable for prediction

» Many false-positive cases and why this is plausible and to be
expected

» Problems of the target variable for our predictions

» Third-party suspension (literal translation of German term:
Foreign Exclusion)

1. does not follow a reconstructible logic
2. differs greatly between providers
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Political consequences and pathways for gambling
supervision.

> better data oversight is needed
» Uniform labels are needed
» Unblocking has to be documented (seems now to be the case)
» Implausible values must be compulsorily checked for an
effective monitoring of operators
> Additional datapoints are needed for an effective "automated
system":
> Assessment of PGSI (etc.)
» Documentation of communication between operator and user
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Best Pipeline and Model: SMOTE-Borderline

Effect on prediction (centered)

Effect on prediction (centered)
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